Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,4-Bis[(2-pyridylethyl)iminomethyl]benzene

Haleden Chiririwa,^a John R. Moss,^a Hong Su,^a* Denver Hendricks^b and Reinout Meijboom^c

^aDepartment of Chemistry, University of Cape Town, Private Bag, Rondebosch 7707, South Africa, ^bDivision of Medical Biochemistry, Faculty of Health Sciences, Private Bag X3, Observatory 7935, South Africa, and ^cDepartment of Chemistry University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa. Correspondence e-mail: harrychiririwa@yahoo.com

Received 23 February 2011; accepted 15 March 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 19.4.

In the title compound, $C_{22}H_{22}N_4$, the centroid of the benzene ring is located on an inversion centre. The dihedral angle between the benzene and pyridine rings is 10.94 (5)°. The crystal structure displays weak intermolecular C-H···N hydrogen bonding and C-H··· π interactions.

Related literature

For related compounds, see: Chakraborty *et al.* (1999); Haga *et al.* (1985).

Experimental

Crystal data	
$C_{22}H_{22}N_4$	a = 6.0078 (6) Å
$M_r = 342.44$	b = 26.023 (3) Å
Monoclinic, $P2_1/n$	c = 6.1319 (7) Å

 $\beta = 106.009 \ (2)^{\circ}$ $V = 921.47 \ (17) \ \text{\AA}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Bruker Kappa DUO APEXII diffractometer 11941 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.110$ S = 1.062288 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C5/N1 and C9–C11/C9'–C11' rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3 - H3 \cdot \cdot \cdot N1^{i}$	0.95	2.74	3.544 (3)	143 (3)
$C4 - H4 \cdot \cdot \cdot N2^{i}$	0.95	2.69	3.593 (2)	159 (4)
$C7 - H7A \cdots N1^{ii}$	0.99	2.87	3.847 (2)	171 (5)
$C2 - H2 \cdot \cdot \cdot Cg1^{iii}$	0.95	2.88	3.826 (4)	172 (5)
$C6-H6A\cdots Cg2^{iv}$	0.99	2.90	3.508 (3)	120 (2)
				1 1

Symmetry codes: (i) x, y, z + 1; (ii) x - 1, y, z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$, (iv) x + 1, y, z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We gratefully acknowledge Mintek and Project AuTEK for funding this project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2006).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakraborty, S., Munshi, P. & Lahiri, G. K. (1999). Polyhedron, 18, 1437–1444.

Haga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47-50.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

organic compounds

 $\mu = 0.08 \text{ mm}^{-1}$

 $0.26 \times 0.24 \times 0.17 \text{ mm}$

2288 independent reflections

1945 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 173 K

 $R_{\rm int} = 0.024$

118 parameters

 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

supplementary materials

Acta Cryst. (2011). E67, o921 [doi:10.1107/S1600536811009809]

1,4-Bis[(2-pyridylethyl)iminomethyl]benzene

H. Chiririwa, J. R. Moss, H. Su, D. Hendricks and R. Meijboom

Comment

This work originates from our interest in developing a new class of tetradentate ligands. To the best of our knowledge, this work demonstrates the first example of neutral pyridinyldimine-based bridging ligand. The title compound might be expected to behave as a tetradentate chelating agent, in which both of the N atoms from the imine might coordinate, along with the two pyridinyl N atoms. Chakraborty *et al.* (1999) reported coordination of similar ligands to ruthenium whilst Haga and Koizumi (1985) reported their coordination to molybdenum. The structure of the title compound crystallized in space group $P2_1/n$ with Z = 2. The molecule, shown in Fig. 1, has a center of inversion at the centroid of the benzene ring and was located in special positions at Wyckoff positon *a*. The conformation of the molecule is best described by the dihedral angle of the central ring and pyridyl ring of 10.94 (5)°. The structure is stabilized by weak hydrogen bonds of the type C—H···N and C—H···π, the metrics of which are given in Table 1. The C—H···N intermolecular interactions, as well as C6—H6A···Ring 1 (of C10—C9—C11—C10'-C9'-C11'), connect the parallel neighbouring molecules into 2-dimentional layers. And these layers are then linked along the *b* axis into 3-dimentional herringbone packing *via* C2—H2···Ring 2 (of C1—C2—C3—C4—C5—N1) interactions, as shown in Fig.2.

Experimental

The title compound was synthesized as follows: a solution of benzene 1,4-dicarboxaldehyde (0.50 g, 3.73 mmol) in methanol (10 ml) was added dropwise to a stirred solution of 2-(pyridin-2-yl)ethanamine(0.91 g, 7.42 mmol) in methanol (10 ml). The mixture was stirred at room temperature for *ca* 16 h. The precipitate was filtered off and washed with diethylether and dried under vacuum for 4 h affording a fine shiny white powder in 85% yield. M.p.: does not melt below 260 °C. Recrystallization by slow diffusion of Et₂O into a concentrated CH₂Cl₂ of the solution gave colorless crystals suitable for X-ray structure analysis.

Refinement

All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed in idealized positions and refined with a riding model with U_{iso} set at 1.2 or 1.5 times U_{eq} of their parent atoms and fixed C—H bond lengths.

Figures

Fig. 1. Molecular structure of titled compound showing the atomic numbering scheme. All non-hydrogen atoms were presented with ellipsoidal model with probability level 40%. Half of the molecule without atomic labels was generated *via* centre of symmetry (symmetry code: -x, -y, -z).

Fig. 2. Projection viewed along [100] showing 3-D herringbone packing. Only the hydrogen atoms that invloved in C—H···N and C—H··· π intermolecular interactions (see the list in Table 1) are shown and labelled. The red dotted lines represent the weak interactions.

1,4-Bis[(2-pyridylethyl)iminomethyl]benzene

Crystal data	
C ₂₂ H ₂₂ N ₄	F(000) = 364
$M_r = 342.44$	$D_{\rm x} = 1.234 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 11941 reflections
a = 6.0078 (6) Å	$\theta = 3.1 - 28.3^{\circ}$
<i>b</i> = 26.023 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 6.1319 (7) Å	T = 173 K
$\beta = 106.009 \ (2)^{\circ}$	Plate, colourless
$V = 921.47 (17) \text{ Å}^3$	$0.26\times0.24\times0.17~mm$
Z = 2	

Data collection

1945 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
$h = -8 \rightarrow 8$
$k = -34 \rightarrow 33$
$l = -8 \rightarrow 8$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0506P)^2 + 0.2363P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \ e \ {\rm \AA}^{-3}$

Special details

Experimental. Data for (I):

IR (KBr): 1610 cm⁻¹ (C=N, imine) ¹HNMR:(CDCl₃) $\delta_{\rm H}$ 8.55(ddd, 2H, *J* =0.8 Hz, *J* = 1.7 Hz, J = 4.8 Hz) 8.21 (t, 2H, *J* = 1.3 Hz) 7.69 (s, 2H) 7.55 (dt, 2H, *J* = 1.9 Hz, *J* = 7.7 Hz) 7.11 (m, 2H) 4.03 (dt, 8H, *J* = 1.2 Hz, *J* = 7.2 Hz) 3.19(t, 4H, *J* = 7.2 Hz); ¹³CN-MR: (400 MHz, CDCl₃) δ 161.05, 159.45, 149.37, 138.88, 136.13, 128.21, 123.67, 121.24, 61.18, 39.61; Analysis calculated for C₂₂H₂₂N₄:*C*, 77.16%; H, 6.48%; N, 16.36%; Found: C, 77.19%; H, 6.22%; N, 16.52%; EI—MS: *m/z* 249.90[*M* – C₇H₆N]⁺.

Half sphere of data collected using *SAINT* strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of φ and ω scans of 0.5°, 40 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	1.01974 (18)	0.16910 (4)	0.82099 (17)	0.0365 (3)
C1	1.1434 (2)	0.20288 (5)	0.9711 (2)	0.0431 (3)
H1	1.2675	0.2201	0.9339	0.052*
N2	0.40565 (16)	0.09448 (4)	0.35620 (15)	0.0282 (2)
C2	1.1022 (2)	0.21422 (5)	1.1750 (2)	0.0406 (3)
H2	1.1936	0.2389	1.2748	0.049*
C3	0.9248 (2)	0.18885 (5)	1.2306 (2)	0.0381 (3)
H3	0.8928	0.1952	1.3715	0.046*
C4	0.7937 (2)	0.15394 (4)	1.07884 (19)	0.0312 (3)
H4	0.6689	0.1363	1.1130	0.037*
C5	0.84667 (18)	0.14496 (4)	0.87569 (18)	0.0252 (2)
C6	0.7121 (2)	0.10708 (4)	0.7047 (2)	0.0327 (3)
H6A	0.6662	0.0778	0.7860	0.039*
H6B	0.8134	0.0936	0.6152	0.039*
C7	0.49617 (19)	0.13015 (4)	0.54368 (19)	0.0283 (2)
H7A	0.3778	0.1365	0.6254	0.034*
H7B	0.5346	0.1634	0.4844	0.034*
C8	0.21489 (18)	0.07288 (4)	0.34628 (17)	0.0251 (2)
H8	0.1384	0.0810	0.4584	0.030*
С9	0.10603 (17)	0.03556 (4)	0.16772 (17)	0.0231 (2)
C10	-0.10072 (18)	0.01157 (4)	0.17194 (18)	0.0259 (2)
H10	-0.1702	0.0196	0.2894	0.031*
C11	0.20546 (18)	0.02380 (4)	-0.00674 (18)	0.0254 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11	0.3453	0.0401	-0.0	122 0.	030*	
Atomic displac	ement paramete	$rs(\AA^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0364 (6)	0.0409 (6)	0.0340 (5)	-0.0050(4)	0.0129 (4)	0.0008 (4)
C1	0.0345 (6)	0.0402 (7)	0.0532 (8)	-0.0114 (5)	0.0095 (6)	0.0025 (6)
N2	0.0260 (5)	0.0295 (5)	0.0272 (5)	-0.0033 (4)	0.0044 (4)	-0.0064 (4)
C2	0.0428 (7)	0.0273 (6)	0.0400 (7)	-0.0030 (5)	-0.0081 (5)	-0.0037 (5)
C3	0.0552 (8)	0.0312 (6)	0.0266 (6)	0.0043 (5)	0.0089 (5)	-0.0037 (5)
C4	0.0354 (6)	0.0288 (5)	0.0317 (6)	-0.0010 (5)	0.0131 (5)	-0.0008 (4)
C5	0.0249 (5)	0.0240 (5)	0.0242 (5)	0.0031 (4)	0.0025 (4)	0.0002 (4)
C6	0.0342 (6)	0.0275 (6)	0.0311 (6)	0.0025 (5)	0.0000 (5)	-0.0061 (4)
C7	0.0257 (5)	0.0278 (5)	0.0296 (5)	-0.0019 (4)	0.0045 (4)	-0.0074 (4)
C8	0.0244 (5)	0.0252 (5)	0.0250 (5)	0.0007 (4)	0.0056 (4)	-0.0027 (4)
C9	0.0219 (5)	0.0217 (5)	0.0239 (5)	0.0004 (4)	0.0034 (4)	-0.0009 (4)
C10	0.0252 (5)	0.0284 (5)	0.0252 (5)	-0.0010 (4)	0.0088 (4)	-0.0026 (4)
C11	0.0214 (5)	0.0262 (5)	0.0289 (5)	-0.0030 (4)	0.0073 (4)	-0.0014 (4)
Geometric part	ameters (Å, °)					
N1—C5		1.3344 (15)	С6—	-C7	1.5	204 (16)
N1—C1		1.3395 (17)	С6—	-H6A	0.9	900
C1—C2		1.372 (2)	С6—	-H6B	0.9	900
C1—H1		0.9500	С7—	-H7A	0.9	900
N2—C8		1.2628 (14)	С7—	-H7B	0.9	900
N2—C7		1.4609 (13)	C8–	-С9	1.4	748 (14)
C2—C3		1.3739 (19)	C8—	-H8	0.9	500
С2—Н2		0.9500	С9—	-C11	1.3	954 (14)
C3—C4		1.3811 (17)	С9—	-C10	1.3	968 (14)
С3—Н3		0.9500	C10-		1.3	848 (14)
C4—C5		1.3880 (15)	C10-	—H10	0.9	500
C4—H4		0.9500	C11-	$-C10^{i}$	1.3	848 (14)
С5—С6		1.5023 (15)	C11-	-H11	0.9	500
C5—N1—C1		117.33 (10)	С7—	-С6—Н6В	109	0.0
N1—C1—C2		124.19 (12)	H6A	—С6—Н6В	107	7.8
N1—C1—H1		117.9	N2-	-C7C6	109	9.03 (9)
C2—C1—H1		117.9	N2-	-С7—Н7А	109	0.9
C8—N2—C7		117.17 (9)	C6—	-С7—Н7А	109	9.9
C1—C2—C3		118.02 (11)	N2-	-С7—Н7В	109	9.9
C1—C2—H2		121.0	С6—	-С7—Н7В	109	9.9
С3—С2—Н2		121.0	H7A	—С7—Н7В	108	3.3
C2—C3—C4		119.10 (11)	N2-	-C8C9	122	2.66 (9)
С2—С3—Н3		120.4	N2-	-С8—Н8	118	3.7
С4—С3—Н3		120.4	С9—	-С8—Н8	118	3.7
C3—C4—C5		119.07 (11)	C11-		119	9.15 (9)
С3—С4—Н4		120.5	C11-	C9C8	121	.17 (9)
С5—С4—Н4		120.5	C10-	—С9—С8	119	9.68 (9)

N1C5C4	122.27 (10)	C11 ⁱ —C10—C9	120.70 (9)
N1—C5—C6	116.12 (10)	C11 ⁱ —C10—H10	119.6
C4—C5—C6	121.60 (10)	С9—С10—Н10	119.6
C5—C6—C7	113.13 (9)	C10 ⁱ —C11—C9	120.15 (9)
С5—С6—Н6А	109.0	C10 ⁱ —C11—H11	119.9
С7—С6—Н6А	109.0	C9—C11—H11	119.9
С5—С6—Н6В	109.0		
C5—N1—C1—C2	-0.4 (2)	C8—N2—C7—C6	111.41 (11)
N1—C1—C2—C3	0.9 (2)	C5—C6—C7—N2	167.84 (9)
C1—C2—C3—C4	-1.10 (19)	C7—N2—C8—C9	-179.14 (9)
C2—C3—C4—C5	0.83 (18)	N2-C8-C9-C11	-2.76 (16)
C1—N1—C5—C4	0.06 (17)	N2-C8-C9-C10	177.48 (10)
C1—N1—C5—C6	-179.64 (10)	C11—C9—C10—C11 ⁱ	0.57 (17)
C3—C4—C5—N1	-0.30 (17)	C8—C9—C10—C11 ⁱ	-179.67 (9)
C3—C4—C5—C6	179.39 (10)	C10—C9—C11—C10 ⁱ	-0.57 (17)
N1—C5—C6—C7	-94.33 (12)	C8—C9—C11—C10 ⁱ	179.68 (9)
C4—C5—C6—C7	85.97 (13)		
Commentation and and (i) and an			

Symmetry codes: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C5/	N1 and C9–C1	/C9'-C11' rings, r	espectively.	
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3—H3···N1 ⁱⁱ	0.95	2.74	3.544 (3)	143 (3)
C4—H4…N2 ⁱⁱ	0.95	2.69	3.593 (2)	159 (4)
C7—H7A…N1 ⁱⁱⁱ	0.99	2.87	3.847 (2)	171 (5)
C2—H2···Cg1 ^{iv}	0.95	2.88	3.826 (4)	172 (5)
C6—H6A···Cg2 ^v	0.99	2.90	3.508 (3)	120 (2)

Symmetry codes: (ii) *x*, *y*, *z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*+1/2, -*y*+1/2, *z*+1/2; (v) *x*+1, *y*, *z*+1.

